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Teaching team

Martin Schrimpf (Assistant Professor)

Abdulkadir Gokce (PhD student)

Merkourios Simos (PhD Student)

Hossein Mirzaei (PhD Student)

Michael Hauri (NX student)

Exercises: 1 - 3 pm on Wednesdays

In the same room

Who am I?

• Assistant Professor at EPFL since 8/2020
• Working on methods for behavioral 

analysis, modeling sensorimotor 
function & skill learning

My office hours: 
Wednesdays, 3 - 4 pm in SV 2811 
(in the weeks when I teach)



Learning Outcomes

• Formulate models of brain function, implement those models in Python

• Hypothesize about potential mechanisms that give rise to behavior

• Design models of brain function

• Characterize current models of brain function

Transversal skills

• Set objectives and design an action plan to reach those objectives.

• Demonstrate the capacity for critical thinking

• Write a scientific or technical report.

• Summarize an article or a technical report.

What is this class about?



Learning Prerequisites

▪ RECOMMENDED COURSES: CS-433

▪ IMPORTANT CONCEPTS TO START THE COURSE: Programming in Python, good mathematical 
background

Teaching methods

▪ Lectures and exercises to discuss and work on problem sets (both numerical and 
analytical).

Logistics of the class



Expected student activities

▪ Attend lectures and take notes during lectures, participate in quizzes and 
read scientific articles. Solve the problem sets and take the final exam.

Assessment methods

▪ The final mark is a combination of three evaluations: 

• problem sets/mini project (25%)

• quizzes (25%)

• final exam (50%)

Grading 



Grading details

▪ We’ll have analytical problem sets (not graded); we’ll share the problem 
sets and solutions after the exercises

▪ We’ll have two journal clubs (with one quiz each, overall graded with 
25%). You need to be present in the exercises (week 8 & 14).

▪ The exam comprises analytical problems & questions (50%)

▪ There will be one computational project on Google Cloud (4 weeks). 
This part will be graded (25%). 

TBD: Thanks for sponsoring!



Let’s start…

Did you take Neuroscience classes?



Course’s title:
Brain-like computation 
and intelligence

Brain-like computation?

We will discuss how the brain computes. We will focus on
distributed processing, brain-like connectivity, spiking, 
plasticity/learning, reward-based learning…

Intelligence?

Concretely, we will try to answer how the brain achieves 
specific, complex abilities such:

• Visually recognizing objects 
• Navigating 
• Language and cognition
• Reaching for objects
• Learning motor skills …

We will also discuss intelligence more broadly (later).



Class Date Topic

1 19/02/2025 Introduction & neural code

2 26/02/2025 Normative models

3 05/03/2025 Bayes and Brain-like circuits

4 12/03/2025 Task-driven models (Path integration)

5 19/03/2025 Task-driven models (Vison)

6 26/03/2025 Task-driven (Unsupervised, Audition, metamers, optimal stimuli)

7 02/04/2025 Task-driven (Proprioception) and Motor Control

8 09/04/2025 Language modeling in the brain I

9 16/04/2025 Language modeling in the brain II

10 23/04/2025 Easter Break

11 30/04/2025 Language modeling in the brain III (language in the service of cognition)

12 07/05/2025 Learning to control

13 14/05/2025 Brain-inspired reinforcement learning

14 21/05/2025 Skill learning

15 28/05/2025 Review



Biological Intelligence

What is this course about?



How does the brain 
compute? 

vs. Turing Machines, von Neumann 
machines, … 

https://en.wikipedia.org/wiki/Human_brain



How does the brain 
compute? 

vs. Turing Machines, von Neumann 
machines, … 

https://en.wikipedia.org/wiki/Human_brain https://en.wikipedia.org/wiki/The_Computer_and_the_Brain



Brains are complex

Human brain:

▪ 86 billion (1010) neurons 

▪ ~1.5×1014 synapses

Mouse brain:

▪ 71 million neurons

▪ 1012 synapses 

Santiago Ramon y Cajal



Neural circuits are staggeringly complex

Felleman and Van Essen Cerebral Cortex 1991 Shepherd and Yamawaki Nature review neuroscience 2021



Biological Intelligence Artificial Intelligence

Hausmann*, Marin-Vargas*, Mathis**, Mathis**, Curr op. in Neuro., 2021

Feynman: What I cannot create, I do not understand. 



How do neuroscientists localize brain function?



https://en.wikipedia.org/wiki/Henry_Molaison

Patient H.M.



https://en.wikipedia.org/wiki/Henry_Molaison

Patient H.M.

Felleman and Van Essen Cerebral Cortex 1991



Milner 1962: mirror drawing could be learned over a period of days by the severely 
amnesic patient H.M. in the absence of any conscious memory of having practiced 

the task before
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HM made us realize that there are different forms of memory and that different parts of the brain support those!



How do neuroscientists study neural function?



Single unit recoding: “Moore’s law”

How advances in neural recording affect data analysis,  Stevenson & Kording Nature Neuroscience 2011



Single unit recoding: “Moore’s law”

How advances in neural recording affect data analysis,  Stevenson & Kording Nature Neuroscience 2011



Extracellular recordings

Quiroga, Cell 2019



What do neurons encode? 



What do neurons care about?
1 degree spot of light 

5 degree spot of light 



Orientation selectivity

Hubel &Wiesel 1959



Reaching task



Variability of responses



Coding for the direction of movement 

Tuning curve: 
𝑓 𝜙 = 𝑓1 + 𝑓2cos 𝜙 − 𝜙0



Place cells, grid cells and the brain’s spatial 
representation system

Moser, Kropff, Moser, Annual Review Neuro 2008



Check out 

▪ David H. Hubel’s Nobel Prize Lecture from 1981:
https://www.youtube.com/watch?v=k2Zz2Re5BCc

▪ Torsten Wiesel’s Nobel Prize Lecture from 1981:

https://www.youtube.com/watch?v=zVRvzoATHmA

▪ May-Britt Moser’s, Edvard Moser’s and John O’Keefe’s Nobel Prize Lecture from 2014:

https://www.youtube.com/watch?v=P0tXhEbvjjg

Further watching…

https://www.youtube.com/watch?v=k2Zz2Re5BCc
https://www.youtube.com/watch?v=zVRvzoATHmA
https://www.youtube.com/watch?v=P0tXhEbvjjg


Olfactory coding
Increasing concentration

Meister & Bonhoeffer, J Neuro 2001
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Single units in the 
human temporal lobe

Quiroga, Cell 2019
Raster plots and peristimulus histograms 
for 3 neurons with stimuli

Neurons can correspond to complex concepts 
shown in different ways in a selective fashion, 
e.g. “buildings” or “math”



Multimodal invariance (visual, audio and text)

Quiroga, Cell 2019

Concept cells



▪ 10,240 recording sites 
in one implant with ~1.1g 

Neuropixel 2.0: 
high-density probe 
for stable, long-term 
recordings 

Steinmetz et al. 2020, Science

https://stevenson.lab.uconn.edu/scaling/



Encoding models

We have seen that 

- neural responses to a stimulus are variable 

- thus, neurons are typically described by stochastic models 

- the (mean) firing rate is often described by “tuning curves”



Example tuning curves:

▪ Gaussian tuning curve with preferred direction (location) 𝜇 and width 𝜎:

𝑓 θ = 𝑓𝑚𝑎𝑥exp −
θ − 𝜇 2

2𝜎2

▪ Cosine tuning curve with preferred phase 𝜙0 and rates 𝑓1, 𝑓2:

𝑓 𝜙 = 𝑓1 + 𝑓2cos 𝜙 − 𝜙0



Encoding models
Imagine a population of neurons encoding a 
continuous variable 𝑥 ∈ ℝD with response 𝑘 = 𝑘1, … 𝑘N .

Here: 

▪ 𝑥 is the stimulus 

▪ 𝑘 = 𝑘1, … 𝑘N denotes the spike count firing rate (for N neurons)

Then several probabilities are relevant:

▪ 𝑃 𝑥 the probability of the stimulus 𝑥 being presented – often called prior probability

▪ 𝑃 𝑘 the probability of the response 𝑘 being recorded

▪ 𝑃 𝑘|𝑥 the conditional probability of evoking spike rate 𝑘 given that stimulus 𝑥 was 
presented (called likelihood for observed 𝑘)

▪ 𝑃 𝑥|𝑘 the conditional probability of observing stimulus 𝑥 given 𝑘 was recorded



Example encoding models

For a single neuron with Poisson emission and tuning curve 𝜆 𝑥 we get:

𝑃 𝑘|𝐱 =
𝜆 𝐱 𝑘

𝑘!
exp −𝜆 𝐱

For 𝑁 neurons that fire (statistically) independently:

𝑃 𝑘|𝐱 =ෑ

𝑖=1

𝑁
𝜆𝑖 𝐱

𝑘𝑖

𝑘𝑖!
exp −𝜆𝑖 𝐱

This encoding model describes the response properties of a group of neurons 
to stimulus x.



How can we decode the stimulus?

Let’s assume we observed the spike count vector k, what can we say about the 
stimulus (location x)?

Bayes theorem:

𝑃 𝑥|𝑘 =
𝑃 𝑥,𝑘

𝑃 𝑘
=

𝑃 𝑥,𝑘 ⋅𝑃 𝑥

𝑃 𝑘 ⋅𝑃 𝑥
= 𝑃 𝑘|𝑥 ⋅

𝑃 𝑥

𝑃 𝑘

Thus, we find that

𝑃 𝑥|𝑘 ∝ 𝑃 𝑘|𝑥 𝑃 𝑥



Well-known estimators/decoders

Maximum a posteriori (MAP) estimator:

𝑥𝑀𝐴𝑃 𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑃 𝑥|𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑃 𝑘|𝑥 𝑃 𝑥

Maximum likelihood estimator (ML):

𝑥𝑀𝐿 𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑃 𝑘|𝑥



Assessing performance with bias and variance

Consider an estimator for the random variable 𝑋 as 𝑥𝑒𝑠𝑡.

Then the bias is given as
𝑏𝑒𝑠𝑡 𝑥 = ⟨𝑥𝑒𝑠𝑡⟩ − 𝑥

and the variance as
𝜎𝑒𝑠𝑡
2 𝑥 = ⟨ 𝑥𝑒𝑠𝑡 − ⟨𝑥𝑒𝑠𝑡⟩

2⟩

Note, here ⟨. ⟩ is given by averaging over P(k|x), i.e.

⟨𝑥𝑒𝑠𝑡⟩ = 𝔼K 𝑥𝑒𝑠𝑡 = න
𝑘

𝑥𝑒𝑠𝑡 k 𝑃 𝑘|𝑥 𝑑𝑘



How well does a population of neurons encode a 
stimulus?

▪ Decoding can be used to understand the limit of information in a population

▪ However, we need optimal decoders, otherwise our conclusions might reflect 
limitations of our decoders, rather than bounds on the neural system being 
studied

▪ How can we get bounds on optimal decoders?



Cramer-Rao inequality and Fisher information

For any biased estimator it holds that

𝜎𝑒𝑠𝑡
2 𝑥 ≥

(1 + 𝑏′𝑒𝑠𝑡 𝑥 )2

𝐼 𝑥

Note that for unbiased estimators, we have

𝜎𝑒𝑠𝑡
2 𝑥 ≥

1

𝐼 𝑥

With “Fisher information” defined as

𝐼 𝑥 = ∫ 𝑝 𝑘|𝑥 −
𝜕2𝑙𝑛𝑝 𝑘|𝑥

𝜕𝑥2
𝑑𝑘

Equivalently one can define

𝐼 𝑥 = ∫ 𝑝 𝑘|𝑥
𝜕𝑙𝑛𝑝 𝑘|𝑥

𝜕𝑥

2

𝑑𝑘



Cauchy-Schwartz inequality
For any pair of vectors in an inner product space it holds that:

⟨𝑢, 𝑣⟩2 ≤ ⟨𝑢, 𝑢⟩⟨𝑣, 𝑣⟩

Proof: Due to the semi-positiveness of the inner product, the following term is 
positive, as it is a square:

⟨ ⟨𝑢, 𝑢⟩𝑣 − ⟨𝑢, 𝑣⟩𝑢 2⟩ ≥ 0

Computing the square gives
⟨𝑢, 𝑢⟩2⟨𝑣, 𝑣⟩ − ⟨𝑢, 𝑣⟩2⟨𝑢, 𝑢⟩ ≥ 0

which proves the CS. Note we write: ⟨w2⟩ =  ⟨𝑤, 𝑤⟩ as a shorthand. 

Corollary: For random variables 𝑢, 𝑣 with inner product:

⟨𝑢, 𝑣⟩: =𝔼 𝑢𝑣

CS yields: 𝔼 𝑢𝑣 2 ≤ 𝔼 𝑢2 𝔼 𝑣2



Hence CS states: 𝔼 𝑢𝑣 2 ≤ 𝔼 𝑢2 𝔼 𝑣2

To prove the Cramer-Rao bound let’s set: 𝑢:=𝜕ln𝑝/𝜕𝑥 and 𝑣:= 𝑥𝑒𝑠𝑡 − ⟨𝑥𝑒𝑠𝑡⟩.

By design we find

⟨𝑢, 𝑢⟩ = 𝐼 𝑥

and

⟨𝑣, 𝑣⟩ = 𝔼 𝑥𝑒𝑠𝑡 − ⟨𝑥𝑒𝑠𝑡⟩
2 = 𝜎𝑒𝑠𝑡

2

Thus, the CS gives us

𝜎𝑒𝑠𝑡
2 𝐼 𝑥 ≥ ⟨

𝜕ln𝑝

𝜕𝑥
(𝑥𝑒𝑠𝑡 − 𝑥𝑒𝑠𝑡 ) ⟩

2



Let’s just copy the last expression: 𝜎𝑒𝑠𝑡
2 𝐼 𝑥 ≥ ⟨

𝜕ln𝑝

𝜕𝑥
(𝑥𝑒𝑠𝑡 − 𝑥𝑒𝑠𝑡 ) ⟩

2

We note that the bias is given by

𝑥 + 𝑏𝑒𝑠𝑡 = ⟨𝑥𝑒𝑠𝑡⟩ = ∫ 𝑥𝑒𝑠𝑡𝑝 𝑘|𝑥 𝑑k

Let’s take the derivative with respect to the stimulus 𝑥, we note:

1 + 𝑏′𝑒𝑠𝑡 𝑥 = ∫ 𝑥𝑒𝑠𝑡 𝑘
𝜕𝑝 𝑘|𝑥

𝜕𝑥
𝑑𝑘 = ∫ 𝑥𝑒𝑠𝑡𝑝 𝑘|𝑥

𝜕𝑙𝑛𝑝 𝑘|𝑥

𝜕𝑥
𝑑𝑘

Note that

∫ ⟨𝑥𝑒𝑠𝑡⟩𝑝 𝑘|𝑥
𝜕𝑙𝑛𝑝 𝑘|𝑥

𝜕𝑥
𝑑𝑘 = ⟨𝑥𝑒𝑠𝑡⟩∫ 𝑝 𝑘|𝑥

𝜕𝑙𝑛𝑝 𝑘|𝑥

𝜕𝑥
𝑑𝑘 = ⟨𝑥𝑒𝑠𝑡⟩∫

𝜕𝑝 𝑘|𝑥

𝜕𝑥
𝑑𝑘 = 0

The last step holds as ∫ 𝑝 𝑘|𝑥 𝑑𝑘 = 1 .Thus, we find that:

1 + 𝑏′𝑒𝑠𝑡 𝑥 = ∫ 𝑥𝑒𝑠𝑡 − ⟨𝑥𝑒𝑠𝑡⟩ 𝑝 𝑘|𝑥
𝜕𝑙𝑛𝑝 𝑘|𝑥

𝜕𝑥
𝑑𝑘

Just plugging this in the RHS of the CS finishes the proof.



Cramer-Rao inequality and Fisher information

For any biased estimator it holds that

𝜎𝑒𝑠𝑡
2 𝑥 ≥

(1 + 𝑏′𝑒𝑠𝑡 𝑥 )2

𝐼 𝑥

Note that for unbiased estimators, we have

𝜎𝑒𝑠𝑡
2 𝑥 ≥

1

𝐼 𝑥

With Fisher information defined as

𝐼 𝑥 = ∫ 𝑝 𝑘|𝑥 −
𝜕2𝑙𝑛𝑝 𝑘|𝑥

𝜕𝑥2
𝑑𝑘



How much information do populations of neurons contain? 

Zhang & Sejnowksi, Neural Computation 1999

You’ll compute this in the exercises!!

tuning with

Average tuning with

D dimension of the stimulus space



▪ Neurons are tuned to many different external variables (location, 
movement direction, odors, concepts, …)

▪ The nervous system is (supposedly) interested in inferring what is 
happening in the world with neural patterns

▪ External variables are encoded in a noisy, distributed way

▪ The Fisher information allows us to study how well a population of 
neurons encode a stimulus/movement plan/etc.  

Take-home messages
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