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Who am I?

* Assistant Professor at EPFL since 8/2020

* Working on methods for behavioral
analysis, modeling sensorimotor
function & skill learning

My office hours:
Wednesdays, 3 -4 pm in SV 2811
(in the weeks when | teach)

Teaching team

Martin Schrimpf (Assistant Professor)
Abdulkadir Gokce (PhD student)
Merkourios Simos (PhD Student)
Hossein Mirzaei (PhD Student)
Michael Hauri (NX student)

Exercises: 1 - 3 pm on Wednesdays
In the same room




=PFL  What is this class about?

Learning Outcomes

« Formulate models of brain function, implement those models in Python
« Hypothesize about potential mechanisms that give rise to behavior

« Design models of brain function

- Characterize current models of brain function

Transversal skills

« Set objectives and design an action plan to reach those objectives.
- Demonstrate the capacity for critical thinking

« Write a scientific or technical report.

< Summarize an article or a technical report.



=L Logistics of the class

Learning Prerequisites
= RECOMMENDED COURSES: CS-433

= |IMPORTANT CONCEPTS TO START THE COURSE: Programming in Python, good mathematical
background

Teaching methods

= Lectures and exercises to discuss and work on problem sets (both numerical and
analytical).



Pl Grading

Expected student activities

= Attend lectures and take notes during lectures, participate in quizzes and
read scientific articles. Solve the problem sets and take the final exam.

Assessment methods

= The final mark is a combination of three evaluations:
* problem sets/mini project (25%)
* quizzes (25%)
* final exam (50%)



=PFL  Grading detalls

= We'll have analytical problem sets (not graded); we’ll share the problem
sets and solutions after the exercises

= \WWe’'ll have two journal clubs (with one quiz each, overall graded with
25%). You need to be present in the exercises (week 8 & 14).

= The exam comprises analytical problems & questions (50%)
= There will be one computational project on Google Cloud (4 weeks).

This part will be graded (25%).

Google Cloud

TBD: Thanks for sponsoring!
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Let’s start...

Did you take Neuroscience classes?




Brain-like computation?

We will discuss how the brain computes. We will focus on
distributed processing, brain-like connectivity, spiking,
plasticity/learning, reward-based learning...

Intelligence?

Concretely, we will try to answer how the brain achieves
specific, complex abilities such:

Visually recognizing objects
Navigating

Language and cognition
Reaching for objects
Learning motor skills ...

We will also discuss intelligence more broadly (later).

Course’s title:
Brain-like computation
and intelligence
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Class

N (o oA w N e

10
11
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13

14
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Date

Topic
19/02/2025 Introduction & neural code
26/02/2025 Normative models
05/03/2025 Bayes and Brain-like circuits
12/03/2025 Task-driven models (Path integration)
19/03/2025 Task-driven models (Vison)
26/03/2025 Task-driven (Unsupervised, Audition, metamers, optimal stimuli)
02/04/2025 Task-driven (Proprioception) and Motor Control

09/04/2025 Language modeling in the brain |

16/04/2025 Language modeling in the brain Il

23/04/2025 Easter Break

30/04/2025 Language modeling in the brain Ill (language in the service of cognition)
07/05/2025 Learning to control

14/05/2025 Brain-inspired reinforcement learning

21/05/2025 Skill learning
28/05/2025 Review



=PFL What is this course about?

Biological Intelligence




How does the brain
| compute?

. Vs. Turing Machines, von Neumann
machines, ...

https://en.wikipedia.org/wiki
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How does the brain
compute?

vs. Turing Machines, von Neumann
machines, ...
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Brains are complex

Human brain:
= 86 billion (101°) neurons

= ~1.5x1014 synapses

Mouse brain:
= 71 million neurons
= 1012 synapses

Santiago Ramon y Cajal



SPFL  Neural circuits are staggeringly complex

==

Thalamus

Brainstem

Spinal cord

Felleman and Van Essen Cerebral Cortex 1991 Shepherd and Yamawaki Nature review neuroscience 2021



EPFL . . . I :
Biological Intelligence — Artificial Intelligence

Feynman: What | cannot create, | do not understand.

Hausmann*, Marin-Vargas*, Mathis**, Mathis**, Curr op. in Neuro., 2021



=PFL  How do neuroscientists localize brain function?



=PrL Patient H.M.

Frontal
lobes

Hippocampus

Medial
septum

https://en.wikipedia.org/wiki/Henry_Molaison
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Milner 1962: mirror drawing could be learned over a period of days by the severely
amnesic patient H.M. in the absence of any conscious memory of having practiced
the task before

40 1st day 2nd day 3rd day

30

10F

Milner (1962) Physiologie de I’hippocampe.
Number of errors in each attempt
N
o
1

oL L R el ot

1 10 1 10 1 10
Attempts each day

RS

HM made us realize that there are different forms of memory and that different parts of the brain support those!

(2-29) 000z 22UaIPS [eINAN 4O $3[dIdULId “[E 13 [9puE)



=P*L  How do neuroscientists study neural function?
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Single unit recoding: “Moore’s law”
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How advances in neural recording affect data analysis, Stevenson & Kording Nature Neuroscience 2011



=PrL  Single unit recoding: “Moore’s law”
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=prL  [Extracellular recordings
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What do neurons encode?
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1 degree spot of light
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What do neurons care about?
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J. Physiol. (1959) 148, 574-591

RECEPTIVE FIELDS OF SINGLE NEURONES IN
THE CAT’S STRIATE CORTEX

By D. H. HUBEL* axp T. N. WIESEL*

From the Wilmer Institute, The Johns Hopkins Hospital and
University, Baltimore, Maryland, U.S.A.

(Received 22 April 1959)



=PFL  Orlentation selectivity
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Fig. 2. Responses of & unit to stimulation with circular spots of light. Receptive field located in ’ - % ,
area centralis of contralateral eye. (This unit could also be activated by the ipsilateral eye.) S——————— —Pcees—

a, 1° spot in the centre region; b, same spot displaced 3° to the right; ¢, 8° spot covering entire

receptive field. Stimulus and background intensities and conventions as in Fig. 1. Scale, 6°. Fig. 3. Same unit as in Fig. 2. 4, responses to shining a rectangular light spot, 1° x 8°; centre of
slit superimposed on centre of receptive field; successive stimuli rotated clockwise, as shown

to left of figure. B, responses to a 1° x 5° slit oriented in various directions, with one end
always covering the centre of the receptive field : note that this central region evoked responses
when stimulated alone (Fig. 2a). Stimulus and background intensities as in Fig. 1; stimulus
duration 1 sec.

Hubel &Wiesel 1959



ON THE RELATIONS BETWEEN THE DIRECTION OF

[ |
=PrL Reach in g task TWO-DIMENSIONAL ARM MOVEMENTS AND CELL DISCHARGE IN

APOSTOLOS P. GEORGOPOULOS,” JOHN F. KALASKA,* ROBERTO CAMINITIL* aNp JOE T. MASSEY®
Departments of Physiology and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

Received October 30, 1981; Revised April 30, 1982; Accepted May 21, 1982

PR3BTR. 002 10 ™

Figure 1. A, Diagram of the behavioral apparatus. The monkey sits at position A, facing a 25-cm square working surface (B)
on which there are nine light-emitting diodes (LEDs). One LED is at the center of the working surface and eight are on a circle
with an 8-cm radius; they are numbered from 0 to 315° counterclockwise. The monkey grasps an articulated manipulandum at its
end (C) and moves it across the x-y surface of the plane to capture within a clear plastic circle (D) whichever LED is illuminated.
The plane is tilted 15° from the horizontal toward the animal. B, Overhead view of a monkey performing the task displayed on
a television monitor. The monkey has moved the manipulandum from the center to the target LED (in this case, the movement
direction is 0°) to complete a trial. The trajectories of movement for this trial and for a few previous trials are superimposed on
the television image as light lines. The small circles are the 25-mm-diameter target windows around each target LED. The
starting (center) window had a diameter of 15 mm. C, Trajectories of 30 movements to each target made by a well trained
monkey. Each dot is the position of the center of the target-capturing circle on the end of the manipulandum taken at 10-msec

- intervals,
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=PFL Variability of responses  mnimicie: oo et pensan

APOSTOLOS P. GEORGOPOULOS,” JOHN F. KALASKA,* ROBERTO CAMINITL' anp JOE T. MASSEY*®

Departments of Physiology and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
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Received October 30, 1981; Revised April 30, 1982; Accepted May 21, 1982

LR U LR IR RN A B )
LRI R R T N R ]
IRIRRR e
LB R R R B R LR NN RN LLRRRRLIEL AR )
trrrerrnn e e
LE R O R N NN TR RTLIOIRTRRREREY I DRV E TR T A B B A |

1 I I 1 I 1 1 1 1 ; 1 U 1 I 1
~B00 MSEC o 500
— 1

PCAR217 .S0O3 ; M

Figure 2. Example of the determination of the timing of the
first change in neuronal activity using the method described in
the text. Impulse activity was recorded from a single neuron
during 6 movements toward the same target and is displayed as
a raster (bottom) and as a perievent histogram (fop). All trials
and the histogram are oriented to the onset of movement. The
time of appearance of the target for each trial is indicated by a
longer vertical line in the spike train to the left of the orienta-
tion point. The histogram is plotted as the impulses per sec
deviation from the mean control rate of discharge observed
before the appearance of the target LED. The bin width of the
histogram is 20 msec. Inc, Onset of the initial increase of activity
as determined by method described in the text; M, onset of
movement; T, mean time + 1 SD of the appearance of the
target.



=PFL Coding for the direction of movement
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Figure 4. Orderly variation in the frequency of discharge of a motor cortical cell with the direction of movement. Upper half,
Rasters are oriented to the movement onset, M, and show impulse activity during five repetitions of movements made in each of
the eight directions indicated by the center diagram. Notice the orderly variation in cell’s activity during the RT, MT, and TET.
Lower half, Directional tuning curve of the same cell. The discharge frequency is for TET. The data points are the mean = SEM.
The regression equation for the fitted sinusoidal curve is D = 32.37 + 7.281 sin § — 21.343 cos 6, where D is the frequency of
discharge and @ is the direction of movement or, equivalently, D = 32.37 + 22.5 cos (8 — 6,), where 8, is the preferred direction
(6o = 161°).



=PFL  Place cells, grid cells and the brain’s spatial
representation system
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Figure 1

Place cell in the hippocampus (#) and grid cell in the medial entorhinal cortex
(MEC) (b). Spike locations (red) are superimposed on the animal’s trajectory in
the recording enclosure (black). Whereas most place cells have a single firing
location, the firing fields of a grid cell form a periodic triangular matrix tiling
the entire environment available to the animal.

Moser, Kropff, Moser, Annual Review Neuro 2008



=*L  Further watching...

Check out

= David H. Hubel's Nobel Prize Lecture from 1981:
https://www.youtube.com/watch?v=k2Zz2Re5BCc

= Torsten Wiesel's Nobel Prize Lecture from 1981:

https://mwww.youtube.com/watch?v=zVRvzoATHmMA
= May-Britt Moser’s, Edvard Moser’s and John O’Keefe’s Nobel Prize Lecture from 2014

https://www.youtube.com/watch?v=P0tXhEbvjjg



https://www.youtube.com/watch?v=k2Zz2Re5BCc
https://www.youtube.com/watch?v=zVRvzoATHmA
https://www.youtube.com/watch?v=P0tXhEbvjjg
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Olfactory coding
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=PFL - Single units in the
human temporal lobe

Neurons can correspond to complex concepts
shown in different ways in a selective fashion,
e.g. “buildings” or “math”
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Raster plots and peristimulus histograms
for 3 neurons with stimuli

Quiroga, Cell 2019



=PFL - Multimodal invariance (visual, audio and text)
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=PFL  Encoding models

We have seen that

- neural responses to a stimulus are variable

- thus, neurons are typically described by stochastic models
- the (mean) firing rate is often described by “tuning curves”



=PrL  Example tuning curves:
= Gaussian tuning curve with preferred direction (location) u and width o

(6 — u)2>

2072

f(8) = frnaxexp (_

= Cosine tuning curve with preferred phase ¢, and rates f;, f5:

f(¢) = f1 + frcos(d — ¢po)




=PFL  Encoding models

Imagine a population of neurons encoding a
continuous variable x € RP with response k = (ky, ... ky).

Here:
= x IS the stimulus
= k = (kq, ... ky) denotes the spike count firing rate (for N neurons)

Then several probabilities are relevant:
= P(x) the probability of the stimulus x being presented — often called prior probability
= P(k) the probability of the response k being recorded

= P(k|x) the conditional probability of evoking spike rate k given that stimulus x was
presented (called likelihood for observed k)

= P(x|k) the conditional probability of observing stimulus x given k was recorded



=PFL  Example encoding models

For a single neuron with Poisson emission and tuning curve A(x) we get:

(x)*
k!

A
P(k|x) = exp(—/l(x))

For N neurons that fire (statistically) independently:

- Ai(x)ki
I

P(k|x) = exp(—2;(%))

i=1

This encoding model describes the response properties of a group of neurons
to stimulus x.



=PFL  How can we decode the stimulus?

Let's assume we observed the spike count vector k, what can we say about the
stimulus (location x)?

Bayes theorem:

P(x|k) =
P(x,k) _ P(x,k)-P(x) P(x)
P(k)  P(k)-P(x) = P(k|x) - P(k)

Thus, we find that

P(x|k) < P(k|x)P(x)



=P7L  Well-known estimators/decoders

Maximum a posteriori (MAP) estimator:

Xyap(k) = argmax,P(x|k) = argmax,P(k|x)P(x)

Maximum likelihood estimator (ML):

xp (k) = argmax,P(k|x)



=PFL Assessing performance with bias and variance

Consider an estimator for the random variable X as x,;.

Then the bias is given as
best(x) = (Xest) — x

and the variance as
Uezst(x) = <(xest - (xest>)2>

Note, here (.) is given by averaging over P(k|x), i.e.

(Xest) = Ex(xest) = jxest (k) P(k|x)dk
k



=PFL  How well does a population of neurons encode a
stimulus?

Firing rate

Position

= Decoding can be used to understand the limit of information in a population

= However, we need optimal decoders, otherwise our conclusions might reflect
limitations of our decoders, rather than bounds on the neural system being

studied
= How can we get bounds on optimal decoders?



=PFL  Cramer-Rao inequality and Fisher information

For any biased estimator it holds that
(14 b est(2))?

I1(x)

O'ezst(x) >

Note that for unbiased estimators, we have .
ol(x) = @

With “Fisher information” defined as

1(x) = [ p(k|x) (—

9% Inp(k|x)
x2 dk

Equivalently one can define

2
dinp(k
np( Ix)> "

I(x) = fp(klx)< o



=PFL  Cauchy-Schwartz inequality

For any pair of vectors in an inner product space it holds that:

(u, v)? < (u, u)(v, v)

Proof: Due to the semi-positiveness of the inner product, the following term is

positive, as it is a square:
(((u, uyv — (u, v)u)?) = 0

Computing the square gives
(u, u)*(v,v) — (u, v)*(u,u) = 0

which proves the CS. Note we write: (w?) = (w,w) as a shorthand.
Corollary: For random variables u, v with inner product:

(u, v): = E(uv)
- CSyields: |[E(uv)|? < E(w?)E(w?)



=PFL Hence cs states: |E(uv)|? < E(w?)E(v?)

To prove the Cramer-Rao bound let’s set: u: =dlnp/dx and v: = x5 — (Xest)-

By design we find

(w,uy = I1(x)
and

(v,v) = [E((xest - (xest))z) = O'ezst

Thus, the CS gives us

Uezstl(x) = (% (Xest — (Xest?)) )2



dinp

cPrL Let's just copy the last expression: ogsI(x) = (== (Xest — (Xest)) )

We note that the bias is given by

X + best = (Xest) = fxestp(klx)dk
Let's take the derivative with respect to the stimulus x, we note:

1+ b,est(x) = fxest(k) ap(klx) dk = fxestp(klx) alnz;(xklx) dk
Note that — ) N (k ) ko
I Greaatpel) 2V g1 — e o) B e = iy PPIPD g g

The last step holds as fp(k|x)dk = 1 .Thus, we flnd that:

al k
14 b o5 () = [ (ost — (Xese DP(K]X) "’g(x ) gk

Just plugging this in the RHS of the CS finishes the proof.



=PFL  Cramer-Rao inequality and Fisher information

For any biased estimator it holds that

o2 () = 1+ b’est(x))z

[(x)

Note that for unbiased estimators, we have

ogse(x) = 0

With Fisher information defined as

1(x) = [ p(k|x) (—

9%Inp(k
p(k|x) "
dx?2



=PFL  How much information do populations of neurons contain?

D dimension of the stimulus space

2]

—_
o

T I I T

Firing rate

1.0

Position

Fisher information per neuron per sec

. _ 0 5 10 15 20 25
You’ll compute this in the exercises!!

Zhang & Sejnowksi, Neural Computation 1999
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Take-home messages

= Neurons are tuned to many different external variables (location,
movement direction, odors, concepts, ...)

= The nervous system is (supposedly) interested in inferring what is
happening in the world with neural patterns

= External variables are encoded in a noisy, distributed way

= The Fisher information allows us to study how well a population of
neurons encode a stimulus/movement plan/etc.
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